Solid-state synthesis of few-layer cobalt-doped MoS2with CoMoS phase on nitrogen-doped graphene driven by microwave irradiation for hydrogen electrocatalysis

N/ACitations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

The high catalytic activity of cobalt-doped MoS2(Co-MoS2) observed in several chemical reactions such as hydrogen evolution and hydrodesulfurization, among others, is mainly attributed to the formation of the CoMoS phase, in which Co occupies the edge-sites of MoS2. Unfortunately, its production represents a challenge due to limited cobalt incorporation and considerable segregation into sulfides and sulfates. We, therefore, developed a fast and efficient solid-state microwave irradiation synthesis process suitable for producing thin Co-MoS2flakes (∼3-8 layers) attached on nitrogen-doped reduced graphene oxide. The CoMoS phase is predominant in samples with up to 15 at% of cobalt, and only a slight segregation into cobalt sulfides/sulfates is noticed at larger Co content. The Co-MoS2flakes exhibit a large number of defects resulting in wavy sheets with significant variations in interlayer distance. The catalytic performance was investigated by evaluating the activity towards the hydrogen evolution reaction (HER), and a gradual improvement with increased amount of Co was observed, reaching a maximum at 15 at% with an overpotential of 197 mV at −10 mA cm−2, and a Tafel slope of 61 mV dec−1. The Co doping had little effect on the HER mechanism, but a reduced onset potential and charge transfer resistance contributed to the improved activity. Our results demonstrate the feasibility of using a rapid microwave irradiation process to produce highly doped Co-MoS2with predominant CoMoS phase, excellent HER activity, and operational stability.

Cite

CITATION STYLE

APA

Fan, J., Ekspong, J., Ashok, A., Koroidov, S., & Gracia-Espino, E. (2020). Solid-state synthesis of few-layer cobalt-doped MoS2with CoMoS phase on nitrogen-doped graphene driven by microwave irradiation for hydrogen electrocatalysis. RSC Advances, 10(56), 34323–34332. https://doi.org/10.1039/d0ra05560c

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free