Ultrasmall superparamagnetic nanoparticles targeting E-selectin: Synthesis and effects in mice in vitro and in vivo

15Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Purpose: We developed a contrast agent for targeting E-selectin expression. We detected the agent using magnetic resonance imaging (MRI) in vivo in nude mice that had undergone nasopharyngeal carcinoma (NPC) metastasis. Methods: Sialyl Lewis X (sLeX) was conjugated with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Hydrodynamic size, polydispersity index, and ζ-potential of USPIO– polyethylene glycol (PEG) nanoparticles and USPIO-PEG-sLeX nanoparticles were measured. Component changes in nanoparticles of USPIO, USPIO-PEG, and USPIO-PEG-sLeX were analyzed by thermogravimetric analysis and Fourier-transform infrared spectroscopy. A model of NPC metastasis to inguinal lymph nodes in nude mice was used to investigate characteristics of theUSPIO-PEG-sLeX nanoparticles in vivo. We investigated the ability of the T2* value, change in T2* value (ΔT2* value), and enhancement rate (ER) to assess accumulation of USPIO-PEG-sLeX nanoparticles quantitatively in mice of a metastasis group and control group. Four MRI scans were undertaken for each mouse. The first scan (t0) was done before administration of USPIO-PEGsLeX nanoparticles (0.1mL) via the tail vein. The other scans were carried out at 0 (t1), 1 (t2), and 2 hours (t3) postinjection. The mean optical density was used to reflect E-selectin expression. Results: SLeX was labeled onto USPIO successfully. In vivo, there were significant interactions between the groups and time for T2* values after administration of USPIO-PEG-sLeX nanoparticles. Six parameters (T2* at t2, ΔT2* at t1, ΔT2* at t2, ER at t1, ER at t2, and ER at t3) were correlated with the mean optical density. Conclusion: USPIO-PEG-sLeX nanoparticles can be used to assess E-selectin expression quantitatively. Use of such molecular probes could enable detection of early metastasis of NPC, more accurate staging, and treatment monitoring.

Cite

CITATION STYLE

APA

Liu, L., Liu, L., Li, Y., Huang, X., Gu, D., Wei, B., … Jin, G. (2019). Ultrasmall superparamagnetic nanoparticles targeting E-selectin: Synthesis and effects in mice in vitro and in vivo. International Journal of Nanomedicine, 14, 4517–4528. https://doi.org/10.2147/IJN.S199571

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free