Introduction: breast milk (MH) contains nutrients and bioactive compounds for child development, including probiotic bacteria, which contribute to intestinal maturation. This benefit accompanies the individual until adulthood. There are new methods such as spray drying that give this compound a good conservation without loss of microbiota. Objective: the aim of this study was to analyze the viability of lactic acid bacteria isolated from human milk with probiotic potential after the spray drying process, as well as to evaluate the possible adhesion in the colon of mice of the Balb/C strain after feeding them powdered human milk and a commercial formula milk. Method: we isolated and identified the presence of lactic acid bacteria with possible probiotic potential in powdered human milk using the MALDI-TOF MS technique. Powdered human milk and a commercial formula milk were fed to mice of the Bald/C strain for 14 weeks. Glucose level and weight were measured in the mice. The feces were collected to verify the presence of lactic bacteria. The mice were sacrificed and their intestines were weighed, isolating the lactic acid bacteria both from the intestines and from the feces. The strains isolated from mice fed human milk were evaluated for their probiotic potential, analyzing their ability to inhibit pathogens, resistance to pH, temperature, adhesion, and hydrophobicity. Results: the presence of Lactobacillus fermentum LH01, Lactobacillus rhamnosus LH02, Lactobacullis reuteri LH03, and Lactobacillus plantarum LH05 in powdered human milk was identified. All strains showed a possible probiotic profile due to the ability of bacteria to resist low pH, bile salts, and exposure to gastric enzymes, as well as their hydrophobicity and self-aggregation capacity, and their failure to show hemagglutination or hemolysis activity in a culture medium rich in erythrocytes. We observed that the consumption of powdered human milk prevented weight gain and constipation in mice. Conclusions: after spray drying, strains with possible probiotic potential may be preserved in human milk. The consumption of powdered human milk with probiotic bacteria prevents constipation and weight gain in mice, when compared to those fed a commercial formula milk.
CITATION STYLE
Rodríguez-Arreola, A., Solis-Pacheco, J. R., Lacroix, M., Balcazar-López, E., Navarro-Hernández, R. E., Sandoval-García, F., … Aguilar-Uscanga, B. R. (2021). In vivo assessment and characterization of lactic acid bacteria with probiotic profile isolated from human milk powder. Nutricion Hospitalaria, 38(1), 152–160. https://doi.org/10.20960/nh.03335
Mendeley helps you to discover research relevant for your work.