Phosphorus (P) pollution from greenhouse wastewater is currently a major issue. A treatment method that can efficiently remove P concentrations ([P]) that fluctuate between greenhouse systems and throughout the year is required. An ideal method would also recover nutrients in a reuseable form. A combined precipitation/ flocculation process incorporating addition of lime and a biodegradable flocculant (guar gum, cationic starch, or chitosan) was investigated for providing optimized P removal and recovery. Effectiveness of this process was evaluated in simulated wastewater of low and high alkalinity, as well as real greenhouse wastewater. Precipitation via lime addition reduced total P to below 1 mg·L-1 in low-alkalinity simulated wastewater, but high alkalinity slightly inhibited separation. This inhibition was overcome by flocculation via guar gum or cationic starch addition, which improved separation efficiency and reduced separation time, although chitosan was ineffective as a flocculant. The precipitation/ flocculation method was found to be effective for treating real greenhouse wastewater, although effectiveness varied with variation in wastewater composition. Recovered precipitate contained 57.4 g·kg-1 P as well as high levels of Ca, Mg, K, Fe, and Zn. This study demonstrates a P separation process incorporating lime and biodegradable flocculants could provide a means of reducing P in greenhouse wastewater below a 1 mg·L-1 regulatory limit in a settling time of less than 30 minutes, while simultaneously recovering P and other nutrients in a form that could be reused as fertilizer. An evaluation of viability of full-scale application of this technology is now warranted.
CITATION STYLE
Dunets, C. S., & Zheng, Y. (2015). Combined precipitation/flocculation method for nutrient recovery from greenhouse wastewater. HortScience, 50(6), 921–926. https://doi.org/10.21273/hortsci.50.6.921
Mendeley helps you to discover research relevant for your work.