Post Tensioned CFRP tubes for improved energy absorption

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Thin-walled tubes made of CFRP (Carbon fiber reinforced Polymer) are being increasingly used as CC (Crush Cans) due to their higher specific energy absorption capacity in the automotive domain for absorbing impact energy during a frontal crash. Finite element analysis (FEA) based computational methods have matured over the years with increased accuracy and acceptable correlation with experimental results. FEA-based computational studies when used appropriately can reduce the number of physical tests and prototypes required besides accelerating the overall cycle design time. The present work proposes an FEA based design validation approach for the evaluation of post-tensioned crush can design that can absorb more impact energy compared to a normal CFRP thin tube. The FEM based method uses a combination of multiple simulation techniques to predict the behavior of a post-tensioned tube. The post-tensioning in the present work has been proposed in the form of internal pressure for the thin tube. It was found that a safe value of pressure, when applied as a post-tensioning load, can improve the energy absorption capacity without increasing the weight of the tube.

Cite

CITATION STYLE

APA

Gattineni, V., & Nathi, V. (2023). Post Tensioned CFRP tubes for improved energy absorption. Journal of Engineering Research (Kuwait), 11(1), 301–310. https://doi.org/10.36909/jer.12501

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free