Digital image forgery detection using JPEG features and local noise discrepancies

36Citations
Citations of this article
69Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Wide availability of image processing software makes counterfeiting become an easy and low-cost way to distort or conceal facts. Driven by great needs for valid forensic technique, many methods have been proposed to expose such forgeries. In this paper, we proposed an integrated algorithm which was able to detect two commonly used fraud practices: copy-move and splicing forgery in digital picture. To achieve this target, a special descriptor for each block was created combining the feature from JPEG block artificial grid with that from noise estimation. And forehand image quality assessment procedure reconciled these different features by setting proper weights. Experimental results showed that, compared to existing algorithms, our proposed method is effective on detecting both copy-move and splicing forgery regardless of JPEG compression ratio of the input image. © 2014 Bo Liu et al.

Cite

CITATION STYLE

APA

Liu, B., Pun, C. M., & Yuan, X. C. (2014). Digital image forgery detection using JPEG features and local noise discrepancies. The Scientific World Journal, 2014. https://doi.org/10.1155/2014/230425

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free