This paper concerns a case study presenting one of the biggest landfills in Poland that required application of complex engineering works to extend the deposing capacity of the structure. The shear strength parameters of the subsoil and waste material used for analyses were based on geotechnical investigation and were then applied in slope stability analyses of the landfill. For the purpose of safety management of the new development and reclamation plan for the landfill, an observational method was applied to increase the geotechnical safety of the structure. The slope reinforcement methods mainly included the geogrid, geocomposite, and berms construction. However, much of the uncertainty associated with the stability of the geogrid-reinforced slope is related to the time-dependent deformation of geosynthetic materials. For the purpose of changes in the geogrid parameters with time, the samples were excavated from the landfill slope after 20 years of exploitation and analyzed in the laboratory. The tests allowed precise determination of the material properties, changing geometry, and mechanical properties like tensile strength and strain. Obtained results were compared to parameters of the brand-new geogrid samples. The tests indicated only insignificant changes in geosynthetics, physical, or mechanical performance properties, and the slope has not been compromised in its stability or performance.
CITATION STYLE
Koda, E., Kiersnowska, A., Kawalec, J., & Osiński, P. (2020). Landfill slope stability improvement incorporating reinforcements in reclamation process applying observational method. Applied Sciences (Switzerland), 10(5). https://doi.org/10.3390/app10051572
Mendeley helps you to discover research relevant for your work.