Inferring high-confidence human protein-protein interactions

28Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs), aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83%) of currently available human PPIs have been reported only once.Results: In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134%) than either ranking based on the hypergeometric test (~109%) or occurrence ranking (~46%).Conclusions: From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high-confidence protein interactions at different levels of confidence will help clarify the topological and biological properties associated with human protein networks. © 2012 Yu et al.; licensee BioMed Central Ltd.

References Powered by Scopus

KEGG: Kyoto Encyclopedia of Genes and Genomes

25483Citations
N/AReaders
Get full text

BioGRID: a general repository for interaction datasets.

3106Citations
N/AReaders
Get full text

The human disease network

2699Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Neurodevelopmental disorders: Mechanisms and boundary definitions from genomes, interactomes and proteomes

103Citations
N/AReaders
Get full text

Developments in toxicogenomics: Understanding and predicting compound-induced toxicity from gene expression data

96Citations
N/AReaders
Get full text

Systems level analysis and identification of pathways and networks associated with liver fibrosis

55Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Yu, X., Wallqvist, A., & Reifman, J. (2012). Inferring high-confidence human protein-protein interactions. BMC Bioinformatics, 13(1). https://doi.org/10.1186/1471-2105-13-79

Readers' Seniority

Tooltip

Researcher 33

51%

PhD / Post grad / Masters / Doc 25

38%

Professor / Associate Prof. 7

11%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 42

66%

Computer Science 9

14%

Biochemistry, Genetics and Molecular Bi... 9

14%

Medicine and Dentistry 4

6%

Save time finding and organizing research with Mendeley

Sign up for free