Based on the determination of X-ray powder diffraction, this study aims to investigate the thermal effect on the phase transformation of microwave-assisted titanate nanotubes (MTNTs). The phase transformation is highly dependent on the intercalating amount of Na(I) within MTNTs and on the heating atmosphere. In other words, the presence of Na(I) favors the transformation of TNTs phase into Na2Ti6O13 whereas anatase phase selectively formed in the case of MTNTs with less Na(I) amount. Furthermore, H2 versus O2 is able to form anatase phase and establish a newly transformation pathway. The photocatalytic ability of the calcined MTNTs was also evaluated based on the observed rate constant of trichloroethylene degradation. In addition to anatase phase, the newly phase including Na 2Ti6O13 and Ti2O3 with calcined MTNTs is able to photocatalyze trichloroethylene. MTNTs calcined with the presence of H2 also exhibit a superior photocatalytic performance to P25 TiO2.
CITATION STYLE
Lo, S. L., Ou, H. H., & Liao, C. H. (2010). Determination of X-ray diffraction on the phase transformation of microwave-assisted titanate nanotubes during thermal treatment. Journal of Nanomaterials, 2010. https://doi.org/10.1155/2010/837384
Mendeley helps you to discover research relevant for your work.