Most electric vehicles use regenerative brakes, since this kind of braking system design recycles electromotive force to increase electric power endurance during braking. This research proposes a sensor-free, integrated driving and braking control system that uses a space-vector-pulse-width module to synthesize stator current by purpose. It calculates the rotor position angle of the motor by detecting variation in the stator current and completes a closed-loop control. When the motor receives a brake command, the controller changes the inverter-switching sequence to generate reverse torque and a magnetic field to complete the driving or braking function using field-oriented control (FOC). This provides a smoother and more accurate motor control than sinusoidal commands with Hall feedback. Compared to the regenerative brake and rheostatic brake, the proposed braking system has a powerful braking torque and shorter reaction time. Comparisons of reaction times for a modified four-wheel electric vehicle equipped with a permanent magnet synchronous motor under neutral-sliding-status, FOC based braking, and short-circuit braking were conducted.
CITATION STYLE
Liu, S. M., Tu, C. H., Lin, C. L., & Liu, V. T. (2020). Field-oriented driving/braking control for electric vehicles. Electronics (Switzerland), 9(9), 1–12. https://doi.org/10.3390/electronics9091484
Mendeley helps you to discover research relevant for your work.