Complex sulfides of thallium with As, Sb, or Bi and with other cations (‘thallium sulfosalts’) are a large group of crystal structures with extreme variability. Incorporation of the large Tl+ cation in them is solved in several different ways: housing of Tl in columns of capped trigonal coordination prisms, which form separate walls in the structure (in different combinations with Pb and/or Sb), regular alternation of large Tl with small cations (As), presence of structural arrays of Tl coordination polyhedra paralleled by arrays of As coordination pyramids with a frequency ratio 1:2, omission derivatives with cavities for Tl accommodation and formation of layer structures with thallium concentrated into separate (inter)layers of different types. The first principle leads to a large family of sartorite homologues and rare lillianite homologues, as well as to the chabournéite group. The second one to the hutchinsonite family, omission derivatives form the routhierite and galkhaite groups, and the 1:2 periodicity ratio principle results in several outstanding structures from different groups. Layer structures consist of two-component and three-component layer combinations. Close cation-cation interactions are present but rare.
CITATION STYLE
Makovicky, E. (2018, November 1). Modular crystal chemistry of thallium sulfosalts. Minerals. MDPI AG. https://doi.org/10.3390/min8110478
Mendeley helps you to discover research relevant for your work.