The auditory signals at the ear can be affected by components arriving both directly from a sound source and indirectly via environmental reverberation. Previous studies have suggested that the perceptual separation of these contributions can be aided by expectations of likely reverberant qualities. Here, we investigated whether vision can provide information about the auditory properties of physical locations that could also be used to develop such expectations. We presented participants with audiovisual stimuli derived from 10 simulated real-world locations via a head-mounted display (HMD; n = 44) or a web-based ( n = 60) delivery method. On each trial, participants viewed a first-person perspective rendering of a location before hearing a spoken utterance that was convolved with an impulse response that was from a location that was either the same as (congruent) or different to (incongruent) the visually-depicted location. We find that audiovisual congruence was associated with an increase in the probability of participants reporting an audiovisual match of about 0.22 (95% credible interval: [ 0.17, 0.27 ]), and that participants were more likely to confuse audiovisual pairs as matching if their locations had similar reverberation times. Overall, this study suggests that human perceivers have a capacity to form expectations of reverberation from visual information. Such expectations may be useful for the perceptual challenge of separating sound sources and reverberation from within the signal available at the ear. Keywords
CITATION STYLE
Tsang, K. Y., & Mannion, D. J. (2022). Relating Sound and Sight in Simulated Environments. Multisensory Research, 128(3). https://doi.org/10.1163/22134808-bja10082
Mendeley helps you to discover research relevant for your work.