Efficient SDN-based Task offloading in fog-assisted cloud environment

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

A distributed computing model called "fog computing" provides cloud-like services which is closer to end devices, and is rapidly gaining popularity. It offers cloud-like computing including storage capabilities, but with less latency and bandwidth requirements, thereby improving the computation capabilities of IoT devices and mobile nodes. In addition, fog computing offers advantages such as support for context awareness, scalability, dependability, and node mobility. Fog computing is frequently used to offload tasks from end devices' applications, enabling quicker execution utilizing the fog nodes' capabilities. Because of the changing nature of the fog environment, task offloading is challenging and the multiple QoS criteria that depend on the type of application being used. This article proposes an SDN-based offloading technique to optimize the task offloading technique for scheduling and processing activities generated by the Internet of Space Things (IoST) devices. The proposed technique utilizes Software-Defined Networking (SDN) optimization to dynamically manage network resources and to facilitate the deployment and execution of offloaded tasks. To model the system which computes the optimal virtual machines (VM) to be allocated in the fog network in order to actively process the offloaded tasks, the GI/G/r queueing model is utilised. This approach minimizes the delay-sensitive task queue and minimises the necessary number of VMs while minimising the waiting time for the fog layer. The findings of the simulation are used to verify the effectiveness of the proposed model.

Cite

CITATION STYLE

APA

Dash, B. B., Satpathy, R., & Patra, S. S. (2024). Efficient SDN-based Task offloading in fog-assisted cloud environment. EAI Endorsed Transactions on Internet of Things, 10. https://doi.org/10.4108/eetiot.4591

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free