Recreational drugs, 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA) and diphenylprolinol, inhibit neurite outgrowth in PC12 cells

14Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

3,4-Methylenedioxymethamphetamine (MDMA) is widely abused as a psychoactive recreational drug. It is well known that MDMA induces neurotoxic damage of serotonergic nerve endings. Although drug abuse is increasing among youths, it is unclear whether recreational drugs affect the development of nerve growth. Thus, the present study examined the effect of recreational drugs, such as MDMA, 3,4-methylenedioxyamphetamine (MDA) and diphenylprolinol, a novel recreational drug with a similar chemical structure as that of psychoactive agent pipradrol, on nerve growth factor (NGF)-induced neurite outgrowth. These recreational drugs induced a dose-dependent cell death in PC12 cells. The IC50 values of MDMA, MDA, R-diphenylprolinol and S-diphenylprolinol were 4.11 mM, 2.75 mM, 1.00 mM and 0.77 mM, respectively, at 24 hr. To examine the effects of these recreational drugs on NGF-induced neurite outgrowth, PC12 cells were treated with NGF together with MDMA, MDA, S-diphenylprolinol or R-diphenylprolinol at low toxic concentrations. The recreational drugs significantly suppressed neurite outgrowth of PC12 cells induced by NGF. The results suggest that these psychoactive recreational drugs may inhibit neurite growth and thus be implicated in their elicited neurotoxicity.

Cite

CITATION STYLE

APA

Kaizaki, A., Tanaka, S., Tsujikawa, K., Numazawa, S., & Yoshida, T. (2010). Recreational drugs, 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA) and diphenylprolinol, inhibit neurite outgrowth in PC12 cells. Journal of Toxicological Sciences, 35(3), 375–381. https://doi.org/10.2131/jts.35.375

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free