Winter driving conditions pose a real hazard to road users with increased chance of collisions during inclement weather events. As such, road authorities strive to service the hazardous roads or collision hot spots by increasing road safety, mobility, and accessibility. One measure of a hot spot would be winter collision statistics. Using the ratio of winter collisions (WC) to all collisions, roads that show a high ratio of WC should be given a high priority for further diagnosis and countermeasure selection. This study presents a unique methodological framework that is built on one of the least explored yet most powerful geostatistical techniques, namely, regression kriging (RK). Unlike other variants of kriging, RK uses auxiliary variables to gain a deeper understanding of contributing factors while also utilizing the spatial autocorrelation structure for predicting WC ratios. The applicability and validity of RK for a large-scale hot spot analysis is evaluated using the northeast quarter of the State of Iowa, spanning five winter seasons from 2013/14 to 2017/18. The findings of the case study assessed via three different statistical measures (mean squared error, root mean square error, and root mean squared standardized error) suggest that RK is very effective for modeling WC ratios, thereby further supporting its robustness and feasibility for a statewide implementation.
CITATION STYLE
Wong, A. H., & Kwon, T. J. (2021). Development and evaluation of geostatistical methods for estimating weather related collisions: A large-scale case study. In Transportation Research Record (Vol. 2675, pp. 828–840). SAGE Publications Ltd. https://doi.org/10.1177/03611981211020008
Mendeley helps you to discover research relevant for your work.