Background:Tumour-derived exosomes (TEXs) have a potential for application in cancer vaccines. Whether TEXs after induction by interferon regulatory factor 1 (IRF-1) are capable of enhancing the antitumour response remains to be determined.Methods:Exosomes released by tumour cells infected with IRF-1-expressing adenovirus (IRF-1-Exo) or treated with interferon-γ (IFN-Exo) were isolated via ultracentrifugation. The IRF-1 target proteins IL-15Rα and MHC class I (MHC-I) were analysed by western blot. Exosomes along with CpG adjuvant were injected into tumour models to assess the antitumour effects. Tumours were harvested for immunofluorescence staining. Splenocytes from tumour-bearing mice were co-cultured with tumour cells. The IFNγ-positive and granzyme B-positive CD8α+ splenocyte cells were quantified by flow cytometry.Results:The IRF-1-Exo or IFN-Exo displayed increased IL-15Rα and MHC-I expression. Injection of IRF-1-Exo or IFN-Exo combined with CpG had improved antitumour effects in mice. This effect may be a result of increased infiltration of tumours by CD4+ and CD8α+ T cells. Antibody-mediated depletion of CD4+ or CD8+ T cells abrogated the antitumour effects. Splenocytes isolated from CpG+IRF-1-Exo-injected Hepa 1-6 tumour mice had increased IFNγ-positive and granzyme B-positive CD8+ cells after co-culturing with Hepa 1-6 cells as compared with MC38 cells.Conclusions:The IRF-1 priming of TEXs enhances antitumour immune response.
CITATION STYLE
Yang, M. Q., Du, Q., Varley, P. R., Goswami, J., Liang, Z., Wang, R., … Geller, D. A. (2018). Interferon regulatory factor 1 priming of tumour-derived exosomes enhances the antitumour immune response. British Journal of Cancer, 118(1), 62–71. https://doi.org/10.1038/bjc.2017.389
Mendeley helps you to discover research relevant for your work.