Background: Mismatch Repair Deficiency (MMR-D)-related tumors are highly immunogenic and constitute ideal vaccination targets. In a proof-of-concept study delayed tumorigenesis and prolonged survival has been shown in a clinically-relevant mouse model for MMR-D-related diseases (=MLH1 knock out mice). To refine this approach, vaccination was combined with immune modulatory low-dose chemotherapy to polarize immune regulatory subtypes. Methods: Mice (prophylactic: 8-10 weeks; therapeutic: > 36 weeks) received a single injection of cyclophosphamide (CPX, 120 mg/kg bw, i.p.) or gemcitabine (GEM, 100 mg/kg bw, i.p.) prior to vaccination (lysate of a gastrointestinal tumor allograft, 10 mg/kg bw, n = 9 mice/group). The vaccine was given repetitively (10 mg/kg bw, s.c., 4 x / once a week, followed by monthly boosts) until tumor formation or progression. Tumor growth ([ 18 F] FDG PET/CT imaging) and immune responses were monitored (flow cytometry, IFNγ ELISpot). The microenvironment was analyzed by immunofluorescence. Results: Prophylactic application of GEM + lysate delayed tumorigenesis compared to lysate monotherapy and CPX-pre-treatment (median time of onset: 53 vs. 47 vs. 48 weeks). 33% of mice even remained tumor-free until the experimental endpoint (= 65 weeks). This was accompanied by long-term effect on cytokine plasma levels; splenic myeloid derived suppressor cells (MDSC) as well as regulatory T cell numbers. Assessment of tumor microenvironment from GEM + lysate treated mice revealed low numbers of MDSCs, but enhanced T cell infiltration, in some cases co-expressing PD-L1. Therapeutic chemo-immunotherapy (GEM + lysate) had minor impact on overall survival (median time: 12 (GEM + lysate) vs. 11.5 (lysate) vs. 3 weeks (control)), but induced complete remission in one case. Dendritic and T cell infiltrates increased in both treatment groups. Reactive T cells specifically recognized MLH1 -/- tumor cells in IFNγ ELISpot, but lacked response towards NK cell targets YAC-1. Conclusions: Combined chemo-immunotherapy impairs tumor onset and growth likely attributable to modulation of immune responses. Depleting or 're-educating' immunosuppressive cell types, such as MDSC, may help moving a step closer to combat cancer.
CITATION STYLE
Maletzki, C., Wiegele, L., Nassar, I., Stenzel, J., & Junghanss, C. (2019). Chemo-immunotherapy improves long-term survival in a preclinical model of MMR-D-related cancer. Journal for ImmunoTherapy of Cancer, 7(1). https://doi.org/10.1186/s40425-018-0476-x
Mendeley helps you to discover research relevant for your work.