Trans-packaging of human immunodeficiency virus type 1 genome into Gag virus-like particles in Saccharomyces cerevisiae

3Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Yeast is recognized as a generally safe microorganism and is utilized for the production of pharmaceutical products, including vaccines. We previously showed that expression of human immunodeficiency virus type 1 (HIV-1) Gag protein in Saccharomyces cerevisiae spheroplasts released Gag virus-like particles (VLPs) extracellularly, suggesting that the production system could be used in vaccine development. In this study, we further establish HIV-1 genome packaging into Gag VLPs in a yeast cell system.Results: The nearly full-length HIV-1 genome containing the entire 5′ long terminal repeat, U3-R-U5, did not transcribe gag mRNA in yeast. Co-expression of HIV-1 Tat, a transcription activator, did not support the transcription. When the HIV-1 promoter U3 was replaced with the promoter for the yeast glyceraldehyde-3-phosphate dehydrogenase gene, gag mRNA transcription was restored, but no Gag protein expression was observed. Co-expression of HIV-1 Rev, a factor that facilitates nuclear export of gag mRNA, did not support the protein synthesis. Progressive deletions of R-U5 and its downstream stem-loop-rich region (SL) to the gag start ATG codon restored Gag protein expression, suggesting that a highly structured noncoding RNA generated from the R-U5-SL region had an inhibitory effect on gag mRNA translation. When a plasmid containing the HIV-1 genome with the R-U5-SL region was coexpressed with an expression plasmid for Gag protein, the HIV-1 genomic RNA was transcribed and incorporated into Gag VLPs formed by Gag protein assembly, indicative of the trans-packaging of HIV-1 genomic RNA into Gag VLPs in a yeast cell system. The concentration of HIV-1 genomic RNA in Gag VLPs released from yeast was approximately 500-fold higher than that in yeast cytoplasm. The deletion of R-U5 to the gag gene resulted in the failure of HIV-1 RNA packaging into Gag VLPs, indicating that the packaging signal of HIV-1 genomic RNA present in the R-U5 to gag region functions similarly in yeast cells.Conclusions: Our data indicate that selective trans-packaging of HIV-1 genomic RNA into Gag VLPs occurs in a yeast cell system, analogous to a mammalian cell system, suggesting that yeast may provide an alternative packaging system for lentiviral RNA. © 2013 Tomo et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Tomo, N., Goto, T., & Morikawa, Y. (2013). Trans-packaging of human immunodeficiency virus type 1 genome into Gag virus-like particles in Saccharomyces cerevisiae. Microbial Cell Factories, 12(1). https://doi.org/10.1186/1475-2859-12-28

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free