Transition and acoustic response of recirculation structures in an unconfined co-axial isothermal swirling flow

22Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

This paper reports the first observations of transition from a pre-vortex breakdown (Pre-VB) flow reversal to a fully developed central toroidal recirculation zone in a non-reacting, double-concentric swirling jet configuration and its response to longitudinal acoustic excitation. This transition proceeds with the formation of two intermediate, critical flow regimes. First, a partially penetrated vortex breakdown bubble (VBB) is formed that indicates the first occurrence of an enclosed structure as the centre jet penetration is suppressed by the growing outer roll-up eddy; resulting in an opposed flow stagnation region. Second, a metastable transition structure is formed that marks the collapse of inner mixing vortices. In this study, the time-averaged topological changes in the coherent recirculation structures are discussed based on the non-dimensional modified Rossby number (Rom) which appears to describe the spreading of the zone of swirl influence in different flow regimes. Further, the time-mean global acoustic response of pre-VB and VBB is measured as a function of pulsing frequency using the relative aerodynamic blockage factor (i.e., maximum radial width of the inner recirculation zone). It is observed that all flow modes except VBB are structurally unstable as they exhibit severe transverse radial shrinkage (~20%) at the burner Helmholtz resonant modes (100-110 Hz). In contrast, all flow regimes show positional instability as seen by the large-scale, asymmetric spatial shifting of the vortex core centres. Finally, the mixing transfer function M (f) and magnitude squared coherence λ2(f) analysis is presented to determine the natural coupling modes of the system dynamic parameters (u', p'), i.e., local acoustic response. It is seen that the pre-VB flow mode exhibits a narrow-band, low pass filter behavior with a linear response window of 100-105 Hz. However, in the VBB structure, presence of critical regions such as the opposed flow stagnation region alters the linearity range with the structure showing a response even at higher pulsing frequencies (100-300 Hz). © 2013 AIP Publishing LLC.

Cite

CITATION STYLE

APA

Santhosh, R., Miglani, A., & Basu, S. (2013). Transition and acoustic response of recirculation structures in an unconfined co-axial isothermal swirling flow. Physics of Fluids, 25(8). https://doi.org/10.1063/1.4817665

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free