The purpose of this study was to create a kinematic model of the knee joint with six degrees of freedom (DOF) and evaluate the effect of medial collateral ligament (MCL) and lateral collateral ligament (LCL) rupture on cartilage contact point distribution on the tibia during flexion. We hypothesized that collateral ligament contributions vary over six DOF of knee joint articulation and affect the cartilage contact point distribution during joint articulation. The ligament contributions and distribution of joint cartilage contact points cannot be fully assessed with simplified joint models or invasive experiments. Therefore, we developed a new model in which the tibia and femur centers of mass were determined from their surface geometry, and the displacement of the moving tibia was determined from the displacements of the attached ligaments. Compared to the intact knee, the tibia with the LCL removed had higher medial translation and lower valgus rotation. The tibia with the MCL removed had higher lateral translation and higher valgus rotation than the intact knee. At 0°, 30°, and 60°, the tibia with the LCL removed had more internal rotation than the intact knee. Understanding six DOF knee joint kinematics with integration of ligament contributions and cartilage contact positions is useful for the diagnosis of ligament injuries and the design of articulating surfaces for total arthroplasty.
CITATION STYLE
Özada, N. (2016). THE EFFECT OF COLLATERAL LIGAMENT INJURY ON CARTILAGE CONTACT IN KNEE JOINTS MODELED WITH SIX DEGREES OF FREEDOM. Journal of Mechanics in Medicine and Biology, 16(3). https://doi.org/10.1142/S0219519416500809
Mendeley helps you to discover research relevant for your work.