Neuromusculoskeletal modeling for neurorehabilitation technologies

0Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We present a methodology based on computational neuromusculoskeletal models of the human body as a means of predicting the actions of muscles during dynamic motor tasks. In this scenario, experimental surface electromyograms (EMG) are used to “drive” the simulated muscles in the model. This also allows estimat ing muscle activation patterns for muscles from which EMGs cannot be measured and allows adjusting experimental EMG recording that may be subject to measurement errors. Furthermore, we present another methodology that uses a lowdimensional set of basic muscle activation primitives (APs) to model the resulting motor programs that coordinate the recruitment of muscles during human locomotion. The APs are then used to perform musculoskeletal simulation of locomotion tasks. We describe the theoretical aspects of the proposed methodology and discuss its implications in neurorehabilitation technologies. Furthermore, we present experimental results that demonstrate the benefits of the new method.

Cite

CITATION STYLE

APA

Sartori, M., & Farina, D. (2013). Neuromusculoskeletal modeling for neurorehabilitation technologies. In Biosystems and Biorobotics (Vol. 1, pp. 1217–1220). Springer International Publishing. https://doi.org/10.1007/978-3-642-34546-3_201

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free