Tumor cells have been shown recently to escape immune recognition by developing resistance to Fas-mediated apoptosis and acquiring expression of Fas ligand (FasL) molecule that they may use for eliminating activated Fas+ lymphocytes. In this study, we report that tumor-specific T lymphocytes isolated from tumor lesions by repeated in vitro TCR stimulation with relevant Ags (mostly represented by normal self proteins, such as MART-1/Melan A and gp100) can develop strategies for overcoming these escape mechanisms. Melanoma cells (and normal melanocytes) express heterogeneous levels of Fas molecule, but they result homogeneously resistant to Fas-induced apoptosis. However, CD4+ and CD8+ CTL clones kill melanoma cells through Fas/FasL-independent, granule-dependent lytic pathway. In these lymphocytes, Ag/MHC complex interaction with TCR does not lead to functional involvement of FasL, triggered, on the contrary, by T cell activation with nonspecific stimuli such as PMA/ionomycin. Additionally, melanoma cells express significant levels of FasL (detectable on the cell surface only after treatment with metalloprotease inhibitors), although to a lesser extent than professional immune cells such as Th1 clones. Nevertheless, antimelanoma CTL clones resist apoptosis mediated by FasL either in soluble form or expressed by Th1 lymphocytes or FasL+ melanoma cells. These results demonstrate that CD4+ and CD8+ antimelanoma T cell clones can be protected against Fas-dependent apoptosis, and thus be useful reagents of immunotherapeutic strategies aimed to potentiate tumor-specific T cell responses.
CITATION STYLE
Rivoltini, L., Radrizzani, M., Accornero, P., Squarcina, P., Chiodoni, C., Mazzocchi, A., … Parmiani, G. (1998). Human Melanoma-Reactive CD4+ and CD8+ CTL Clones Resist Fas Ligand-Induced Apoptosis and Use Fas/Fas Ligand-Independent Mechanisms for Tumor Killing. The Journal of Immunology, 161(3), 1220–1230. https://doi.org/10.4049/jimmunol.161.3.1220
Mendeley helps you to discover research relevant for your work.