TongueTap: Multimodal Tongue Gesture Recognition with Head-Worn Devices

0Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Mouth-based interfaces are a promising new approach enabling silent, hands-free and eyes-free interaction with wearable devices. However, interfaces sensing mouth movements are traditionally custom-designed and placed near or within the mouth. TongueTap synchronizes multimodal EEG, PPG, IMU, eye tracking and head tracking data from two commercial headsets to facilitate tongue gesture recognition using only off-the-shelf devices on the upper face. We classified eight closed-mouth tongue gestures with 94% accuracy, offering an invisible and inaudible method for discreet control of head-worn devices. Moreover, we found that the IMU alone differentiates eight gestures with 80% accuracy and a subset of four gestures with 92% accuracy. We built a dataset of 48,000 gesture trials across 16 participants, allowing TongueTap to perform user-independent classification. Our findings suggest tongue gestures can be a viable interaction technique for VR/AR headsets and earables without requiring novel hardware.

Cite

CITATION STYLE

APA

Gemicioglu, T., Winters, R. M., Wang, Y. T., Gable, T. M., & Tashev, I. J. (2023). TongueTap: Multimodal Tongue Gesture Recognition with Head-Worn Devices. In ACM International Conference Proceeding Series (pp. 564–573). Association for Computing Machinery. https://doi.org/10.1145/3577190.3614120

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free