Background: Cyclooxygenase-2 (COX-2) is the inducible isoform of the cyclooxygenase enzyme family. COX-2 is involved in tumor development and progression, and frequent overexpression of COX-2 in a variety of human cancers has made COX-2 an important drug target for cancer treatment. Non-invasive imaging of COX-2 expression in cancer would be useful for assessing COX-2-mediated effects on chemoprevention and radiosensitization using COX-2 inhibitors as an emerging class of anti-cancer drugs, especially for colorectal cancer. Herein, we describe the radiopharmacological analysis of [18F]Pyricoxib, a novel radiolabeled COX-2 inhibitor, for specific PET imaging of COX-2 in colorectal cancer. Methods: Uptake of [18F]Pyricoxib was assessed in human colorectal cancer cell lines HCA-7 (COX-2 positive) and HCT-116 (COX-2 negative). Standard COX-2 inhibitors were used to test for specificity of [18F]Pyricoxib for COX-2 binding in vitro and in vivo. PET imaging, biodistribution, and radiometabolite analyses were included into radiopharmacological evaluation of [18F]Pyricoxib. Results: Radiotracer uptake in COX-2 positive HCA-7 cells was significantly higher than in COX-2 negative HCT-116 cells (P < 0.05). COX-2 inhibitors, celecoxib, rofecoxib, and SC58125, blocked uptake of [18F]Pyricoxib in HCA-7 cells in a concentration-dependent manner. The radiotracer was slowly metabolized in mice, with approximately 60 % of intact compound after 2 h post-injection. Selective COX-2-mediated tumor uptake of [18F]Pyricoxib in HCA-7 xenografts was confirmed in vivo. Celecoxib (100 mg/kg) selectively blocked tumor uptake by 16 % (PET image analysis; P < 0.05) and by 51 % (biodistribution studies; P < 0.01). Conclusions: The novel PET radiotracer [18F]Pyricoxib displays a promising radiopharmacological profile to study COX-2 expression in cancer in vivo.
CITATION STYLE
Tietz, O., Wuest, M., Marshall, A., Glubrecht, D., Hamann, I., Wang, M., … Wuest, F. (2016). PET imaging of cyclooxygenase-2 (COX-2) in a pre-clinical colorectal cancer model. EJNMMI Research, 6(1). https://doi.org/10.1186/s13550-016-0192-9
Mendeley helps you to discover research relevant for your work.