Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS

50Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Altered cellular biomechanics have been implicated as key photogenic triggers in age-related diseases. An aberrant liquid-to-solid phase transition, observed in in vitro reconstituted droplets of FUS protein, has been recently proposed as a possible pathogenic mechanism for amyotrophic lateral sclerosis (ALS). Whether such transition occurs in cell environments is currently unknown as a consequence of the limited measuring capability of the existing techniques, which are invasive or lack of subcellular resolution. Here we developed a non-contact and label-free imaging method, named background-deflection Brillouin microscopy, to investigate the three-dimensional intracellular biomechanics at a sub-micron resolution. Our method exploits diffraction to achieve an unprecedented 10,000-fold enhancement in the spectral contrast of single-stage spectrometers, enabling, to the best of our knowledge, the first direct biomechanical analysis on intracellular stress granules containing ALS mutant FUS protein in fixed cells. Our findings provide fundamental insights on the critical aggregation step underlying the neurodegenerative ALS disease.

Cite

CITATION STYLE

APA

Antonacci, G., de Turris, V., Rosa, A., & Ruocco, G. (2018). Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS. Communications Biology, 1(1). https://doi.org/10.1038/s42003-018-0148-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free