End-to-End Dynamic Gesture Recognition Using MmWave Radar

9Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Millimeter-wave (mmWave) radar sensors are a promising modality for gesture recognition as they can overcome several limitations of optic sensors typically used for gesture recognition. These limitations include cost, battery consumption, and privacy concerns. This work focuses on finger level (called micro) gesture recognition using mmWave radar. We propose a set of 6 micro-gestures that are not only intuitive and easy to perform for the user but are distinguishable based on Doppler and angle variation in time. For gesture recognition, we propose an end-to-end solution including an activity detection module (ADM) that automatically segments the data and the gesture classifier (GC) that takes the segmented data and predicts the gesture. Both the ADM and GC are based on machine learning (ML) tools. We evaluate the proposed solution using data collected from 11 users and our proposed solution achieves an end-to-end accuracy of 95%.

References Powered by Scopus

Long Short-Term Memory

76931Citations
N/AReaders
Get full text

XGBoost: A scalable tree boosting system

32564Citations
N/AReaders
Get full text

Delving deep into rectifiers: Surpassing human-level performance on imagenet classification

15471Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Towards Controlling Mobile Robot Using Upper Human Body Gesture Based on Convolutional Neural Network

3Citations
N/AReaders
Get full text

Rodar: Robust Gesture Recognition Based on mmWave Radar Under Human Activity Interference

2Citations
N/AReaders
Get full text

STAPointGNN: Spatial-Temporal Attention Graph Neural Network for Gesture Recognition Using Millimeter-Wave Radar

1Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Ali, A., Parida, P., Va, V., Ni, S., Nguyen, K. N., Ng, B. L., & Zhang, J. C. (2022). End-to-End Dynamic Gesture Recognition Using MmWave Radar. IEEE Access, 10, 88692–88706. https://doi.org/10.1109/ACCESS.2022.3199411

Readers over time

‘22‘23‘24‘2502468

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 2

67%

Researcher 1

33%

Readers' Discipline

Tooltip

Engineering 3

75%

Neuroscience 1

25%

Save time finding and organizing research with Mendeley

Sign up for free
0