Bus travel time prediction under high variability conditions

27Citations
Citations of this article
36Readers
Mendeley users who have this article in their library.

Abstract

Bus travel times are prone to high variability, especially in countries that lack lane discipline and have heterogeneous vehicle profiles. This leads to negative impacts such as bus bunching, increase in passenger waiting time and cost of operation. One way to minimize these issues is to accurately predict bus travel times. To address this, the present study used a modelbased approach by incorporating mean and variance in the formulation of the model. However, the accuracy of prediction did not improve significantly and hence a machine learning-based approach was considered. Support vector machines were used and prediction was done using ν-support vector regression with linear kernel function. The proposed scheme was implemented in Chennai using data collected from public transport buses fitted with global positioning system. The performance of the proposed method was analysed along the route, across subsections and at bus stops. Results show a clear improvement in performance under high variance conditions.

Cite

CITATION STYLE

APA

Reddy, K. K., Anil Kumar, B., & Vanajakshi, L. (2016). Bus travel time prediction under high variability conditions. Current Science, 111(4), 700–711. https://doi.org/10.18520/cs/v111/i4/700-711

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free