Low threshold optical bistability at terahertz frequencies with graphene surface plasmons

86Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We propose a modified Kretschmann-Raether configuration to realize the low threshold optical bistable devices at the terahertz frequencies. The metal layer is replaced by the dielectric sandwich structure with the insertion of graphene, and this configuration can support TM-polarization surface electromagnetic wave. The surface plasmon resonance is strongly dependent on the Fermi-level of graphene and the thickness of the sandwich structure. It is found that the switching-up and switching-down intensities required to observe the optical bistable behavior are lowered markedly due to the excitation of the graphene surface plasmons, thus making this configuration a prime candidate for experimental investigation at the terahertz range. And the switching threshold value can be further reduced by decreasing the Fermi-level or increasing the thickness of sandwich structure, hence providing a new way for realizing tunable optical bistable devices. Finally, the optical bistability at higher terahertz frequency and the influence of relaxation time under the actual experimental condition on Fermi-level are discussed.

Cite

CITATION STYLE

APA

Dai, X., Jiang, L., & Xiang, Y. (2015). Low threshold optical bistability at terahertz frequencies with graphene surface plasmons. Scientific Reports, 5. https://doi.org/10.1038/srep12271

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free