Biosynthesis, intracellular targeting, and degradation of the EAAC1 glutamate/aspartate transporter in C6 glioma cells

21Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Rat C6 glioma cells were used as a model system to study the biosynthesis, intracellular targeting, and degradation of the EAAC1 transporter, a sodium-dependent glutamate/aspartate transport protein that encodes System X-A,G activity. At steady state, nearly 70% of the EAAC1 transporter was located at the cell surface. The newly synthesized EAAC1 protein was co-translationally N-glycosylated with high mannose oligosaccharide chains that were processed into complex-type sugar chains as the protein matured. The final maturation steps for EAAC1 protein coincided with its plasma membrane arrival, which was first detected at about 45 min after the initial synthesis. The newly synthesized EAAC1 protein was protected from degradation during the maturation and targeting process, as well as during the first 5 h after plasma membrane arrival. After this initial lag period, both the newly synthesized transporter and the total cellular EAAC1 pool were degraded by first order kinetics with a half-life of 6 h. These results represent the first analysis of the synthesis and degradation of the EAAC1 amino acid transporter.

Cite

CITATION STYLE

APA

Yang, W., & Kilberg, M. S. (2002). Biosynthesis, intracellular targeting, and degradation of the EAAC1 glutamate/aspartate transporter in C6 glioma cells. Journal of Biological Chemistry, 277(41), 38350–38357. https://doi.org/10.1074/jbc.M202052200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free