Magnetic resonance spectroscopy of the human brain

339Citations
Citations of this article
190Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Magnetic resonance (MR; synonymous with NMR = nuclear magnetic resonance) is a universal physical technique best known for non-invasive detection and anatomical mapping of water protons (H). MR-spectroscopy (MRS) records protons from tissue chemicals other than water, intrinsic phosphorus containing metabolites, sodium, potassium, carbon, nitrogen, and fluorine. MRS is therefore an imaging technique with the potential to record human and animal biochemistry in vivo. As a result of wide availability of MRI equipment in research laboratories and hospitals, MRS is a serious competitor with PET to define normal body composition and its perturbation by pharmacological and pathological events. This article describes practical aspects of in vivo MRS with particular emphasis on the brain, where novel metabolites have been described. A survey of these new aspects of neurochemistry emphasize their practical utility as neuronal and axonal markers, measures of energy status, membrane constituents, and osmolytes, as well as some xenobiotics, such as alcohol. The concept of multinuclear in vivo MRS is illustrated by diagnosis and therapeutic monitoring of several human brain disorders. Although these methods are currently most frequently encountered in human studies, as well as with transgenic and knockout mouse models, MRS adds a new dimension to anatomic and histopathologic descriptions. © 2001 Wiley-Liss, Inc.

Cite

CITATION STYLE

APA

Zeineh, M. M., Engel, S. A., Thompson, P. M., & Bookheimer, S. Y. (2001, April 15). Magnetic resonance spectroscopy of the human brain. Anatomical Record. https://doi.org/10.1002/ar.1058

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free