Despite linear-optical fusion (Bell measurement) being probabilistic, photonic cluster states for universal quantum computation can be prepared without feed-forward by fusing small n-photon entangled clusters, if the success probability of each fusion attempt is above a threshold, λc(n). We prove a general bound λc(n)≥1∕(n-1), and develop a conceptual method to construct long-range-connected clusters where λc(n) becomes the bond percolation threshold of a logical graph. This mapping lets us find constructions that require lower fusion success probabilities than currently known, and settle a heretofore open question by showing that a universal cluster state can be created by fusing 3-photon clusters over a 2D lattice with a fusion success probability that is achievable with linear optics and single photons, making this attractive for integrated-photonic realizations.
CITATION STYLE
Pant, M., Towsley, D., Englund, D., & Guha, S. (2019). Percolation thresholds for photonic quantum computing. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08948-x
Mendeley helps you to discover research relevant for your work.