Flow rate of polygonal grains through a bottleneck: Interplay between shape and size

16Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

We report two-dimensional simulations of circular and polygonal grains passing through an aperture at the bottom of a silo. The mass flow rate for regular polygons is lower than for disks, as observed by other authors. We show that both the exit velocity of the grains and the packing fraction are lower for polygons, which leads to the reduced flow rate. We point out the importance of the criteria used to define when two objects of different shape are considered to be of the same size. Depending on this criteria, the mass flow rate may vary significantly for some polygons. Moreover, the particle flow rate is non-trivially related to a combination of mass flow rate, particle shape and particle size. For some polygons, the particle flow rate may be lower or higher than that of the corresponding disks depending on the size comparison criteria.

Cite

CITATION STYLE

APA

Goldberg, E., Carlevaro, C. M., & Pugnaloni, L. A. (2015). Flow rate of polygonal grains through a bottleneck: Interplay between shape and size. Papers in Physics, 7. https://doi.org/10.4279/PIP.070016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free