Malaria is widely associated with poverty, and a low-cost vaccine against malaria is highly desirable for implementing comprehensive vaccination programmes in developing countries. Production of malaria antigens in plants is a promising approach, but its development has been hindered by poor expression of the antigens in plant cells. In the present study, we targeted plant seeds as a low-cost vaccine production platform and successfully expressed the Plasmodium falciparum 42-kDa fragment of merozoite surface protein 1 (MSP142), a leading malaria vaccine candidate, at a high level in transgenic Arabidopsis seeds. We overcame hurdles of transcript and protein instabilities of MSP142 in plants by synthesizing a plant-optimized MSP142 cDNA and either targeting the recombinant protein to protein storage vacuoles or fusing it with a stable plant storage protein. An exceptional improvement in MSP142 expression, from an undetectable level to 5% of total extractable protein, was achieved with these combined strategies. Importantly, the plant-derived MSP142 maintains its natural antigenicity and can be recognized by immune sera from malaria-infected patients. Our results provide a strong basis for the development of a plant-based, low-cost malaria vaccine. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology and Blackwell Publishing Ltd.
CITATION STYLE
Lau, O. S., Ng, D. W. K., Chan, W. W. L., Chang, S. P., & Sun, S. S. M. (2010). Production of the 42-kDa fragment of Plasmodium falciparum merozoite surface protein 1, a leading malaria vaccine antigen, in Arabidopsis thaliana seeds. Plant Biotechnology Journal, 8(9), 994–1004. https://doi.org/10.1111/j.1467-7652.2010.00526.x
Mendeley helps you to discover research relevant for your work.