An explicit upper bound on the tail probabilities for the normalized Rademacher sums is given. This bound, which is best possible in a certain sense, is asymptotically equivalent to the corresponding tail probability of the standard normal distribution, thus affirming a longstanding conjecture by Efron. Applications to sums of general centered uniformly bounded independent random variables and to the Student test are presented.
CITATION STYLE
Pinelisy, I. (2012). An asymptotically Gaussian bound on the Rademacher tails. Electronic Journal of Probability, 17, 1–22. https://doi.org/10.1214/EJP.v17-2026
Mendeley helps you to discover research relevant for your work.