There is a growing interest in generating dendritic cells (DCs) for using as vaccines. Several cytokines, especially stem cell factor (SCF) and FLT3-ligand (FL), have been identified as essential to produce large numbers of myeloid precursors and even to increase DC yield obtained by the action of granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor alpha (TNF-alpha). However, there are few studies on the effect of the early-acting cytokines, commonly used to expand CD34+ progenitor cells, on DC generation. We report here that in the absence of serum, SCF, FL, and thrombopoietin (TPO) plus interleukin-6 (IL-6) and SCF, FL, and TPO plus IL-3 were able to generate CD14+CD1a- and CD14- CD1a+ myeloid DC precursors from CD34+ cells, but IL-6 had an inhibitory effect on the generation of CD14- CD1a+ cells. Both DC precursors differentiated into mature DCs by GM-CSF, IL-4, and TNF-alpha, and DCs obtained from both types of culture exhibited equal allostimulatory capacity. CD1a+ DCs generated could be identified on the basis of DC-specific intracellular adhesion molecule-grabbing nonintegrin (DC-SIGN) expression, a novel C-type lectin receptor expressed on dermal DCs but not on Langerhans cells. In addition, the inclusion of IL-3 to the culture medium induced the appearance of CD13- cells that differentiated into plasmacytoid DC (DC2) on the addition of TNF-alpha, allowing the identification of developmental stages of DC2. Like true plasmacytoid DCs, these cells secreted interferon-alpha after TLR9-specific stimulation with a specific CpG nucleotide.
CITATION STYLE
Encabo, A., Solves, P., Mateu, E., Sepúlveda, P., Carbonell‐Uberos, F., & Miñana, M. D. (2004). Selective Generation of Different Dendritic Cell Precursors from CD34 + Cells by Interleukin‐6 and Interleukin‐3. STEM CELLS, 22(5), 725–740. https://doi.org/10.1634/stemcells.22-5-725
Mendeley helps you to discover research relevant for your work.