Operationalising fairness in medical AI adoption: Detection of early Alzheimer's disease with 2D CNN

11Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

Objectives To operationalise fairness in the adoption of medical artificial intelligence (AI) algorithms in terms of access to computational resources, the proposed approach is based on a two-dimensional (2D) convolutional neural networks (CNN), which provides a faster, cheaper and accurate-enough detection of early Alzheimer's disease (AD) and mild cognitive impairment (MCI), without the need for use of large training data sets or costly high-performance computing (HPC) infrastructures. Methods The standardised Alzheimer's Disease Neuroimaging Initiative (ADNI) data sets are used for the proposed model, with additional skull stripping, using the Brain Extraction Tool V.2approach. The 2D CNN architecture is based on LeNet-5, the Leaky Rectified Linear Unit activation function and a Sigmoid function were used, and batch normalisation was added after every convolutional layer to stabilise the learning process. The model was optimised by manually tuning all its hyperparameters. Results The model was evaluated in terms of accuracy, recall, precision and f1-score. The results demonstrate that the model predicted MCI with an accuracy of 0.735, passing the random guessing baseline of 0.521 and predicted AD with an accuracy of 0.837, passing the random guessing baseline of 0.536. Discussion The proposed approach can assist clinicians in the early diagnosis of AD and MCI, with high-enough accuracy, based on relatively smaller data sets, and without the need of HPC infrastructures. Such an approach can alleviate disparities and operationalise fairness in the adoption of medical algorithms. Conclusion Medical AI algorithms should not be focused solely on accuracy but should also be evaluated with respect to how they might impact disparities and operationalise fairness in their adoption.

Cite

CITATION STYLE

APA

Heising, L., & Angelopoulos, S. (2022). Operationalising fairness in medical AI adoption: Detection of early Alzheimer’s disease with 2D CNN. BMJ Health and Care Informatics, 29(1). https://doi.org/10.1136/bmjhci-2021-100485

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free