Text representation is one of the key tasks in the field of natural language processing (NLP). Traditional feature extraction and weighting methods often use the bag-of-words (BoW) model, which may lead to a lack of semantic information as well as the problems of high dimensionality and high sparsity. At present, to solve these problems, a popular idea is to utilize deep learning methods. In this paper, feature weighting, word embedding, and topic models are combined to propose an unsupervised text representation method named the feature, probability, and word embedding method. The main idea is to use the word embedding technology Word2Vec to obtain the word vector, and then combine this with the feature weighted TF-IDF and the topic model LDA. Compared with traditional feature engineering, the proposed method not only increases the expressive ability of the vector space model, but also reduces the dimensions of the document vector. Besides this, it can be used to solve the problems of the insufficient information, high dimensions, and high sparsity of BoW. We use the proposed method for the task of text categorization and verify the validity of the method.
CITATION STYLE
Zhou, W., Wang, H., Sun, H., & Sun, T. (2019). A method of short text representation based on the feature probability embedded vector. Sensors (Switzerland), 19(17). https://doi.org/10.3390/s19173728
Mendeley helps you to discover research relevant for your work.