Sliding of temperate basal ice on a rough, hard bed: Creep mechanisms, pressure melting, and implications for ice streaming

18Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

Abstract

Basal ice motion is crucial to ice dynamics of ice sheets. The classic Weertman model for basal sliding over bedrock obstacles proposes that sliding velocity is controlled by pressure melting and/or ductile flow, whichever is the fastest; it further assumes that pressure melting is limited by heat flow through the obstacle and ductile flow is controlled by standard power-law creep. These last two assumptions, however, are not applicable if a substantial basal layer of temperate (T ~ Tmelt) ice is present. In that case, frictional melting can produce excess basal meltwater and efficient water flow, leading to near-thermal equilibrium. Higherature ice creep experiments have shown a sharp weakening of a factor 5-10 close to Tmelt, suggesting standard power-law creep does not operate due to a switch to melt-assisted creep with a possible component of grain boundary melting. Pressure melting is controlled by meltwater production, heat advection by flowing meltwater to the next obstacle and heat conduction through ice/rock over half the obstacle height. No heat flow through the obstacle is required. Ice streaming over a rough, hard bed, as possibly in the Northeast Greenland Ice Stream, may be explained by enhanced basal motion in a thick temperate ice layer.

References Powered by Scopus

Pressure solution in nature, theory and experiment.

619Citations
N/AReaders
Get full text

Superplastic deformation of ice: Experimental observations

527Citations
N/AReaders
Get full text

Greenland flow variability from ice-sheet-wide velocity mapping

478Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

127Citations
N/AReaders
Get full text

Recent Progress in Greenland Ice Sheet Modelling

46Citations
N/AReaders
Get full text

Highly temporally resolved response to seasonal surface melt of the Zachariae and 79N outlet glaciers in northeast Greenland

31Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Krabbendam, M. (2016). Sliding of temperate basal ice on a rough, hard bed: Creep mechanisms, pressure melting, and implications for ice streaming. Cryosphere, 10(5), 1915–1932. https://doi.org/10.5194/tc-10-1915-2016

Readers over time

‘16‘17‘18‘19‘20‘21‘22‘23‘2405101520

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 28

62%

Researcher 14

31%

Professor / Associate Prof. 3

7%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 40

83%

Environmental Science 4

8%

Chemistry 2

4%

Engineering 2

4%

Save time finding and organizing research with Mendeley

Sign up for free
0