Jumlah pembelian barang setiap harinya berbeda-beda karena itu permasalahan kekurangan stock barang dapat terjadi dan mengakibatkan ketidakpuasan pelanggan dalam berbelanja karena tidak tersedianya produk yang diinginkan. Permasalahan kekurangan stock barang dapat diminimalisir dengan melakukan penelitian mengenai data mining asosiasi menggunakan data transaksi penjualan dari Toko X berdasarkan metode algoritma pincer search dan algoritma FP-Growth. Penelitian ini bertujuan untuk mendapatkan association rule dan jumlah kemunculan frequent item set dalam data transaksi melalui minimum support yang dimanfaatkan untuk mengatasi permasalahan kekurangan stock barang di Toko X serta melakukan komparasi algoritma pincer search dan algoritma FP-Growth terhadap waktu pemrosesan data, frequent item set, rule, confidence dan lift ratio dengan bahasa pemrograman Python. Komparasi algoritma pincer search dan algoritma FP-Growth terhadap frequent item set, rule, confidence dan lift ratio dengan bahasa pemrograman Python memperoleh hasil yang sama, tetapi waktu yang dibutuhkan dalam pemprosesan data berbeda yang disebabkan oleh minimum support, jumlah transaksi dan jumlah item serta alur proses data yang berbeda dari kedua metode.
CITATION STYLE
Wulandari, P. R., Dwi Suarjaya, I. M. A., & Rusjayanthi, N. K. D. (2022). Komparasi Algoritma Pincer Search dan Algoritma FP-Growth. Techno.Com, 21(2), 280–291. https://doi.org/10.33633/tc.v21i2.5803
Mendeley helps you to discover research relevant for your work.