Extension of lipid-linked oligosaccharides is a high-priority aspect of the unfolded protein response: Endoplasmic reticulum stress in Type I congenital disorder of glycosylation fibroblasts

49Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Asparagine (N)-linked glycans on endoplasmic reticulum (ER) glycoproteins have critical roles in multiple facets of protein folding and quality control. Inhibition of synthesis of lipid-linked oligosaccharides (LLOs), the precursors of N-linked glycans, causes glycoprotein misfolding. This results in ER stress and triggers the unfolded protein response (UPR), which consists of a set of adaptive events, or "aspects," including enhanced extension of LLO intermediates. Type I congenital disorders of glycosylation (CDGs) are characterized by diminished LLO synthesis and aberrant N-glycosylation. Such defects would be predicted to cause chronic ER stress with continuous UPR activation. We employed a quantitative pharmacological approach with dermal fibroblasts to show that (1) compared with three other well-known UPR aspects (transcriptional activation, inhibition of translation, and cell death), LLO extension was the most sensitive to ER stress; and (2) Type I CDG cells had a mild form of chronic ER stress in which LLO extension was continuously stress-activated, but other aspects of the UPR were unchanged. To our knowledge, Type I CDGs are the only human diseases shown to have chronic ER stress resulting from genetic defects in the ER quality control system. In conclusion, LLO extension has a high priority in the UPR of dermal fibroblasts. This suggests that cells stimulate N-glycosylation as part of a first line of defense against ER dysfunction. The broader implications of these results for the biological significance of the UPR are discussed.

Cite

CITATION STYLE

APA

Shang, J., Körner, C., Freeze, H., & Lehrman, M. A. (2002). Extension of lipid-linked oligosaccharides is a high-priority aspect of the unfolded protein response: Endoplasmic reticulum stress in Type I congenital disorder of glycosylation fibroblasts. Glycobiology, 12(5), 307–317. https://doi.org/10.1093/glycob/12.5.307

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free