Salicylic acid induced by herbivore feeding antagonizes jasmonic acid mediated plant defenses against insect attack

36Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We recently reported the transcriptomic signature of salicylic acid (SA) and jasmonic acid (JA) biosynthetic and responsive genes in Arabidopsis thaliana plants infested with the herbivore Eurydema oleracea. We demonstrated that insect feeding causes induction of both SA- and JA-mediated signaling pathways. Using transgenic SA-deficient NahG plants, we also showed antagonistic cross-talk between these two phytohormones. To gain more insight into the roles of the SA and JA pathways in plant defenses against E. oleracea, we report here on the dynamics of SA and JA levels in the wild-type genotype Col-0 and the transgenic Arabidopsis NahG mutant that does not accumulate SA. We show that SA strongly accumulates in the wild-type plants after 24 h of herbivore infestation, while JA levels do not change significantly. On the contrary, in the infested NahG plants, SA levels were not affected by E. oleracea feeding, whereas JA levels which were constitutively higher than the wild-type did not significantly change after 6 hours of herbivore feeding. Accordingly, when the wild-type and the jar1-1 mutant (which fails to accumulate JA-Ile) Arabidopsis plants were challenged with E. oleracea in a two-choice arena, the insect fed preferentially on the jar1-1 plants over the wild-type. These data support the conclusion that E. oleracea infestation strongly induces the SA pathway in the wild-type, thus antagonizing JA-mediated plant defenses against herbivory, as a strategy to suppress plant immunity.

Cite

CITATION STYLE

APA

Costarelli, A., Bianchet, C., Ederli, L., Salerno, G., Piersanti, S., Rebora, M., & Pasqualini, S. (2020). Salicylic acid induced by herbivore feeding antagonizes jasmonic acid mediated plant defenses against insect attack. Plant Signaling & Behavior, 15(1), 1704517. https://doi.org/10.1080/15592324.2019.1704517

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free