Crystalline inorganic frameworks with 56-ring, 64-ring, and 72-ring channels

155Citations
Citations of this article
63Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The development of zeolite-like structures with extra-large pores (>12-membered rings, 12R) has been sporadic and is currently at 30R. In general, templating via molecules leads to crystalline frameworks, whereas the use of organized assemblies that permit much larger pores produces noncrystalline frameworks. Synthetic methods that generate crystallinity from both discrete templates and organized assemblies represent a viable design strategy for developing crystalline porous inorganic frameworks spanning the micro and meso regimes. We show that by integrating templating mechanisms for both zeolites and mesoporous silica in a single system, the channel size for gallium zincophosphites can be systematically tuned from 24R and 28R to 40R, 48R, 56R, 64R, and 72R. Although the materials have low thermal stability and retain their templating agents, single-activator doping of Mn2+ can create white-light photoluminescence.

Cite

CITATION STYLE

APA

Lin, H. Y., Chin, C. Y., Huang, H. L., Huang, W. Y., Sie, M. J., Huang, L. H., … Wang, S. L. (2013). Crystalline inorganic frameworks with 56-ring, 64-ring, and 72-ring channels. Science, 339(6121), 811–813. https://doi.org/10.1126/science.1232097

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free