Lagrangean decomposition for mean-variance combinatorial optimization

7Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We address robust versions of combinatorial optimization problems, focusing on the uncorrelated ellipsoidal uncertainty case, which corresponds to so-called mean-variance optimization. We present a branch and bound-algorithm for such problems that uses lower bounds obtained from Lagrangean decomposition. This approach allows to separate the uncertainty aspect in the objective function from the combinatorial structure of the feasible set. We devise a combinatorial algorithm for solving the unrestricted binary subproblem efficiently, while the underlying combinatorial optimization problem can be addressed by any black box-solver. An experimental evaluation shows that our approach clearly outperforms other methods for mean-variance optimization when applied to robust shortest path problems and to risk-averse capital budgeting problems arising in portfolio optimization. © 2014 Springer International Publishing.

Cite

CITATION STYLE

APA

Baumann, F., Buchheim, C., & Ilyina, A. (2014). Lagrangean decomposition for mean-variance combinatorial optimization. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 8596 LNCS, pp. 62–74). Springer Verlag. https://doi.org/10.1007/978-3-319-09174-7_6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free