An investigation of airflow distributions with booster fan for a large opening mine through field study and CFD modeling

4Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this study, we conducted a field survey for the large opening mine with the survey data serving as the numerical modeling inputs to investigate the booster fan airflow distribution using a computational fluid dynamics (CFD) model. A CFD model was created with a booster fan inside the model domain, the airflow distribution patterns around the booster fan were then examined to gain insights on the booster fans impact on the air distribution in the dedicated mining section. Based on the modeling results, the booster fan is an effective ventilation control for airflow direction in large opening mine and the booster fan placement can significantly influence the effectiveness of face pollutants’ removal through airflow recirculation. The fan can boost air velocity to create the multi-pillar scale airflow recirculation to dilute the extraction heading pollutants. Furthermore, the typical continuous traverse done by many mine operators, which only covering part of the entire cross section, may be inadequate around booster fans with errors ranging from 35% to 210%. The airflow calculated at the entry adjacent to the booster fan was 25% that of the fan setting with the subsequent entries exchange diminishing by ∼65.2% per entry indicating streamlining of airflow in the booster fan entry. While the geometry of the mine will play a significant role in determining the airflow distributions this study lays the groundwork for future studies on booster fan placement optimization and effectiveness for face ventilation.

Cite

CITATION STYLE

APA

Gendrue, N., Liu, S., Bhattacharyya, S., & Clister, R. (2023). An investigation of airflow distributions with booster fan for a large opening mine through field study and CFD modeling. Tunnelling and Underground Space Technology, 132. https://doi.org/10.1016/j.tust.2022.104856

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free