In Trypanosoma brucei and related Kinetoplastids, regulation of gene expression occurs mostly post-transcriptionally, and RNA-binding proteins play a critical role in the regulation of mRNA and protein abundance. Trypanosoma brucei ZC3H28 is a 114 KDa cytoplasmic mRNA-binding protein with a single C(x)7C(x)5C(x)sH zinc finger at the C-terminus and numerous proline-, histidine- or glutamine-rich regions. ZC3H28 is essential for normal bloodstream-form trypanosome growth, and when tethered to a reporter mRNA, ZC3H28 increased reporter mRNA and protein levels. Purification of N-terminally tagged ZC3H28 followed by mass spectrometry showed enrichment of ribosomal proteins, various RNA-binding proteins including both poly(A) binding proteins, the translation initiation complex EIF4E4/EIF4G3, and the activator MKT1. Tagged ZC3H28 was preferentially associated with long RNAs that have low complexity sequences in their 3′-untranslated regions; their coding regions also have low ribosome densities. In agreement with the tethering results, after ZC3H28 depletion, the levels of a significant proportion of its bound mRNAs decreased. We suggest that ZC3H28 is implicated in the stabilization of long mRNAs that are poorly translated.
CITATION STYLE
Bishola Tshitenge, T., & Clayton, C. (2022). Interactions of the Trypanosoma brucei brucei zinc-finger-domain protein ZC3H28. Parasitology, 149(3), 356–370. https://doi.org/10.1017/S003118202100189X
Mendeley helps you to discover research relevant for your work.