We construct dynamical models for a sample of 36 nearby galaxies with Hubble Space Telescope photometry and ground-based kinematics. The models assume that each galaxy is axisymmetric, with a two-integral distribution function, arbitrary inclination angle, a position-independent stellar mass-to-light ratio Upsilon, and a central massive dark object (MDO) of arbitrary mass M_bh. They provide acceptable fits to 32 of the galaxies for some value of M_bh and Upsilon; the four galaxies that cannot be fit have kinematically decoupled cores. The mass-to-light ratios inferred for the 32 well-fit galaxies are consistent with the fundamental plane correlation Upsilon \propto L^0.2, where L is galaxy luminosity. In all but six galaxies the models require at the 95% confidence level an MDO of mass M_bh ~ 0.006 M_bulge = 0.006 Upsilon L. Five of the six galaxies consistent with M_bh=0 are also consistent with this correlation. The other (NGC 7332) has a much stronger upper limit on M_bh. We consider various parameterizations for the probability distribution describing the correlation of the masses of these MDOs with other galaxy properties. One of the best models can be summarized thus: a fraction f ~0.97 of galaxies have MDOs, whose masses are well described by a Gaussian distribution in log (M_bh/M_bulge) of mean -2.27 and width ~0.07.
CITATION STYLE
Magorrian, J., Tremaine, S., Richstone, D., Bender, R., Bower, G., Dressler, A., … Lauer, T. (1998). The Demography of Massive Dark Objects in Galaxy Centers. The Astronomical Journal, 115(6), 2285–2305. https://doi.org/10.1086/300353
Mendeley helps you to discover research relevant for your work.