In a recent report, the National Academies of Science, Engineering, and Medicine (NASEM) recommends that “the United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.” It is generally acknowledged that a decarbonization of the world’s energy system is unavoidable to combat climate change. While an exothermic chemical reaction such as the combustion of fossil fuels produces an energy of <1 eV per molecule, a nuclear fusion reaction is an attractive alternative as it releases 10 million times more energy. To date, considerable effort has been devoted to research involving the fusion between the nuclei of the two heavy isotopes of hydrogen: deuterium (D) and tritium (T). However, the main roadblock for the adoption of this technology is the need to heat the fuel to temperatures in the order of 50 million Kelvin and to keep it stable under extreme pressure conditions. Recent results show that this difficulty can be overcome by utilizing the nonthermal radiation pressure that can be generated via chirped-pulse amplifier laser systems and can trigger the fusion of hydrogen and boron-11 nuclei, producing clean energy in the form of kinetic alpha particles, thus sidestepping nuclear radiation problems due to the aneutronic nature of the process.
CITATION STYLE
Hora, H., Fuerbach, A., Ladouceur, F., & McKenzie, W. (2021). Green energy generation via optical laser pressure initiated nonthermal nuclear fusion. Optical Engineering, 61(02). https://doi.org/10.1117/1.oe.61.2.021004
Mendeley helps you to discover research relevant for your work.