Machine Learning Algorithms for Predicting Stunting among Under-Five Children in Papua New Guinea

14Citations
Citations of this article
158Readers
Mendeley users who have this article in their library.

Abstract

Preventing stunting is particularly important for healthy development across the life course. In Papua New Guinea (PNG), the prevalence of stunting in children under five years old has consistently not improved. Therefore, the primary objective of this study was to employ multiple machine learning algorithms to identify the most effective model and key predictors for stunting prediction in children in PNG. The study used data from the 2016–2018 Papua New Guinea Demographic Health Survey, including from 3380 children with complete height-for-age data. The least absolute shrinkage and selection operator (LASSO) and random-forest-recursive feature elimination were used for feature selection. Logistic regression, a conditional decision tree, a support vector machine with a radial basis function kernel, and an extreme gradient boosting machine (XGBoost) were employed to construct the prediction model. The performance of the final model was evaluated using accuracy, precision, recall, F1 score, and area under the curve (AUC). The results of the study showed that LASSO-XGBoost has the best performance for predicting stunting in PNG (AUC: 0.765; 95% CI: 0.714–0.819) with accuracy, precision, recall, and F1 scores of 0.728, 0.715, 0.628, and 0.669, respectively. Combined with the SHAP value method, the optimal prediction model identified living in the Highlands Region, the age of the child, being in the richest family, and having a larger or smaller birth size as the top five important characteristics for predicting stunting. Based on the model, the findings support the necessity of preventing stunting early in life. Emphasizing the nutritional status of vulnerable maternal and child populations in PNG is recommended to promote maternal and child health and overall well-being.

Cite

CITATION STYLE

APA

Shen, H., Zhao, H., & Jiang, Y. (2023). Machine Learning Algorithms for Predicting Stunting among Under-Five Children in Papua New Guinea. Children, 10(10). https://doi.org/10.3390/children10101638

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free