The GRAVITY young stellar object survey: VI. Mapping the variable inner disk of HD 163296 at sub-au scales

11Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Context. Protoplanetary disks drive some of the formation process (e.g., accretion, gas dissipation, formation of structures) of stars and planets. Understanding such physical processes is one of the most significant astrophysical questions. HD 163296 is an interesting young stellar object for which infrared and sub-millimeter observations have shown a prominent circumstellar disk with gaps plausibly created by forming planets. Aims. This study aims to characterize the morphology of the inner disk in HD 163296 with multi-epoch, near-infrared interferometric observations performed with GRAVITY at the Very Large Telescope Interferometer. Our goal is to depict the K-band (λ0 ∼ 2.2 μm) structure of the inner rim with milliarcsecond (sub-au) angular resolution. Our data is complemented with archival Precision Integrated-Optics Near-infrared Imaging ExpeRiment (H-band; λ0 ∼ 1.65 μm) data of the source. Methods. We performed a gradient descent parametric model fitting to recover the sub-au morphology of our source. Results. Our analysis shows the existence of an asymmetry in the disk surrounding the central star of HD 163296. We confirm variability of the disk structure in the inner ∼2 mas (0.2 au). While variability of the inner disk structure in this source has been suggested by previous interferometric studies, this is the first time that it is confirmed in the H-and K-bands by using a complete analysis of the closure phases and squared visibilities over several epochs. Because of the separation from the star, position changes, and the persistence of this asymmetric structure on timescales of several years, we argue that it is probably a dusty feature (e.g., a vortex or dust clouds) made by a mixing of silicate and carbon dust and/or refractory grains, inhomogeneously distributed above the mid-plane of the disk.

Cite

CITATION STYLE

APA

Sanchez-Bermudez, J., Garatti, C. C. O., Garcia Lopez, R., Perraut, K., Labadie, L., Benisty, M., … Woillez, J. (2021, October 1). The GRAVITY young stellar object survey: VI. Mapping the variable inner disk of HD 163296 at sub-au scales. Astronomy and Astrophysics. EDP Sciences. https://doi.org/10.1051/0004-6361/202039600

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free