Hexagonal boron nitride (h-BN) is an attractive wide-bandgap material for application to emitters and detectors operating in the deep ultraviolet (DUV) spectral region. The optical transmittance of h-BN in the DUV region is particularly important for these devices. We report on the deposition of thick h-BN films (>200 nm) on Al0.7Ga0.3N templates via radio-frequency sputtering, along with the realization of ultrahigh transmittance in the DUV region. The fraction of the gas mixture (Ar/N2) was varied to investigate its effects on the optical transmittance of BN. DUV light transmittance of as high as 94% was achieved at 265 nm. This value could be further enhanced to exceed 98% by a post-annealing treatment at 800 °C in a N2 ambient for 20 min. The phase of the highly DUV–transparent BN film was determined to be a purely hexagonal structure via Raman spectra measurements. More importantly, these deposition processes were performed at a low temperature (300 °C), which can provide protection from device performance degradation when applied to actual devices.
CITATION STYLE
Hao, G.-D., Taniguchi, M., & Inoue, S. (2019). Highly Deep Ultraviolet–Transparent h-BN Film Deposited on an Al0.7Ga0.3N Template by Low-Temperature Radio-Frequency Sputtering. Materials, 12(24), 4046. https://doi.org/10.3390/ma12244046
Mendeley helps you to discover research relevant for your work.